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Abstract

When observations are correlated, modeling the within-subject correlation structure using quantile 

regression for longitudinal data can be difficult unless a working independence structure is 

utilized. Although this approach ensures consistent estimators of the regression coefficients, it 

may result in less efficient regression parameter estimation when data are highly correlated. 

Therefore, several marginal quantile regression methods have been proposed to improve parameter 

estimation. In a longitudinal study some of the covariates may change their values over time, and 

the topic of time-dependent covariate has not been explored in the marginal quantile literature. 

As a result, we propose an approach for marginal quantile regression in the presence of time­

dependent covariates, which includes a strategy to select a working type of time-dependency. In 

this manuscript, we demonstrate that our proposed method has the potential to improve power 

relative to the independence estimating equations approach due to the reduction of mean squared 

error.
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1 Introduction

Generalized estimating equations (GEE) [1] are well-known for their use in the marginal 

analysis of data from longitudinal studies in which measurements contributed from the 

same subject are correlated over time. As long as a correct mean structure is given, the 

regression parameters are consistently estimated even when the working correlation structure 

is misspecified. However, in the presence of certain types of time-dependent covariates, the 

estimating equations, and thus estimates, can be biased unless an independence working 

correlation structure is employed [2]. Unfortunately, the resulting regression parameter 

estimation can be inefficient because not all valid moment conditions are utilized [3, 4]. 

Therefore, multiple approaches have been proposed to use all valid moments [5, 6, 7]. Most 

recently, the modified GEE approach proposed by Chen and Westgate [7] has been shown to 

perform best in terms of improving estimation efficiency.
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Methods for the marginal analysis of longitudinal data in the presence of time-dependent 

covariates have only been developed for the modeling of the mean. An example carried 

out in this literature focuses on anthropometric screening data from Bouis and Haddad [8], 

in which the outcome of interest is morbidity index and time-dependent covariates include 

body mass index (BMI), among others. Unfortunately, modeling the conditional mean of 

morbidity index may not be ideal because the response distribution is severely right skewed. 

In this situation, the use of marginal quantile regression represents an appealing alternative 

approach. In particular, we are interested in how the distribution of the longitudinally 

measured morbidity index is associated with the time-dependent covariates.

Quantile regression for independent outcomes, introduced by Koenker and Bassett [9], has 

advantages relative to mean regression in that it does not require parametric assumptions 

on the error distribution and it is robust to outliers. In addition, quantile regression can 

provide a thorough description on the entire conditional distribution of a response variable. 

However, when outcomes are correlated, modeling the within-subject correlation structure 

can be difficult. Using an independence working correlation structure has been shown to 

generate consistent estimators of the regression coefficients [10, 11, 12]. This, however, may 

cause a loss of efficiency, especially when data are highly correlated [13, 14, 15, 16].

Therefore, multiple approaches have recently been proposed for improving regression 

parameter estimation in marginal quantile regression for longitudinal data [13, 17]. However, 

the specification of a correlation structure is required for the quasi-score method of Jung 

[17], and regression parameter estimation from the use of quadratic inference function 

(QIF) approach of Tang and Leng [13] is not guaranteed to work well even if the 

correlation structure is correctly specified [18, 19]. Therefore, Fu and Wang [14] suggested 

a combination of the between- and within- weighted estimating equations under the 

working exchangeable structure, which was firstly introduced by Stoner and Leroux [20]. 

Additionally, Fu and Wang [14] extended their approach to allow any type of working 

correlation structure [19]. As a result, not only does this approach improve estimation 

performance, but it is robust to different error distributions. In longitudinal studies, some of 

the covariate values may change over time and cause feed-back effects from the response 

variable. This topic has not been explored in the literature on marginal quantile regression.

In this manuscript, we first propose an approach for marginal quantile regression in the 

presence of time-dependent covariates. This proposed method combines the estimating 

equations approach of Fu et al. [19] with the modified GEE approach of Chen and Westgate 

[7]. In consequence, the proposed approach can achieve notable gains in efficiency when 

compared with estimating equations under an independence correlation structure. Second, 

we propose a strategy to select a working type of time-dependency because in practice it 

may not be the case that the researcher knows the type of time-dependent covariate. In the 

marginal analysis literature with time-dependency, criteria such as the mean squared error 

(MSE), taking into account the influences moment conditions have on both the efficiency 

and bias of regression parameter estimation, can be used to select a working correlation 

structure [18, 21] or a classification type of time-dependent covariate [22]. We extend the 

use of the MSE to choose a working classification type such that consistent regression 

parameter estimation is a result.
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This manuscript is organized as follows. Section 2 introduces a marginal quantile regression 

and types of time-dependent covariates for longitudinal data. In Section 3, we propose the 

modified estimating equations for quantile regression in the presence of time-dependent 

covariates. Furthermore, we introduce the approach to selecting a working classification type 

for time-dependent covariates. In Section 4, we carry out a simulation study to compare the 

estimation performance and assess the utility of the proposed selection criterion relative to 

estimating equations with an independence working structure, and Section 5 demonstrates 

the proposed method in application to the motivating anthropometric screening data [8, 23]. 

Finally, we give concluding remarks in Section 6.

2 Quantile Regression and Time-Dependent Covariates

2.1 Notation and Quantile Regression

For ease of illustration, suppose we have a longitudinal study in which N independent 

subjects are repeatedly measured over T distinct time points. However, in general, the 

number of repeated measurements is allowed to vary across subjects. Let Yi = [Yi1, …, 

YiT]T denote the observed outcome vector for the ith subject, and assume that the τth 

conditional quantile of Yij, j = 1, …, T; i = 1, …, N for τ ∈ (0, 1) is denoted by 

Qτ Y ij ∣ xij = xijT βτ, where xij = [1, x1ij, …, xpij]T is a vector observed at time point j 

for subject i, and βτ = β0
τ, β1

τ, …, βp
τ T

 is an unknown vector corresponding to the regression 

coefficients at the τth quantile. Let Sij
τ = τ − I Y ij ≤ xijT βτ  and Si

τ = Si1
τ , …, SiT

τ T
, where 

I(.) is an indicator function. The corresponding covariance matrix for Si
τ is given by 

V i
τ = Ai

1/2Ri
τ(α)Ai

1/2, where Ai = diag[τ(1 − τ), …, τ(1 − τ)] is a diagonal matrix 

representing the marginal variances, and Ri
τ(α) is a symmetric positive definite correlation 

matrix with 1 along the diagonal and one or more unknown correlation parameters given by 

α.

To find the estimate of the regression parameters, βτ
, we consider the following optimal 

estimating equations [14, 15, 16, 17]

∑
i = 1

N
Xi

TΛiAi
−1/2Ri

τ−1(α)Ai
−1/2Si

τ = 0, (1)

in which Λi = diag[fi1(0), …, fiT (0)] with fij(0) assumed to be a constant can be further 

eliminated [14]. The score function for the mth component corresponding to α, as well as 

the first partial derivative of the working Gaussian log-likelihood function for S1
τ, …, SN

τ

with respect to the mth component of α, can be expressed as [19]

∑
i = 1

N
tr

∂Riτ
−1

(α)
∂αm

Ai
−1/2SiτSiτ

T
Ai

−1/2 − Riτ .
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The correlation parameter αm and its corresponding working correlation structure then 

can be estimated and constructed by optimizing this score function. We note that the 

asymptotic estimator for Cov βτ
 is hardly obtained due to the involvement of unknown 

density functions of the errors. As a result, an induced smoothing technique [24, 25] has 

been commonly used to the marginal quantile regression models [14, 15, 16, 26]

In Equation (1), the (k + 1)th row corresponds to the estimating equation for βk
τ and is given 

by

∑
i = 1

N
∑

s = 1

T
∑

j = 1

T
xkisvi

sj τ − I Yij ≤ xkijβk
τ = 0,

where vi
sj, i = 1, …, N and s, j = 1, …, T, is the (s, j)th element of V i

τ−1
. If βk

τ corresponds to 

certain types of time-dependent covariates, as will be specified in the following subsection, 

then for all s, j we may not have

E xkis τ − I Y ij ≤ xkijβk
τ = 0. (2)

2.2 Types of Time-Dependent Covariates

Four existing types of time-dependent covariates have been introduced in the marginal 

analysis literature for longitudinal data [5, 27]. In the manner of quantile regression 

modeling, the kth covariate is classified as a Type I time-dependent covariate if Equation (2) 

holds for all s, j; s, j = 1, …, T, at a given quantile level τ, a Type II if Equation (2) for s ⩾ j, 
a Type III if Equation (2) does not hold for some s > j, and a Type IV, which is the opposite 

of a Type II, if Equation (2) for s ⩽ j.

If βk
τ corresponds to a time-dependent covariates which is classified as Type II, III, or 

IV, then Equation (2) does not hold for some s, j, will result in invalid moments. Pepe 

and Anderson [2] supported the use of GEE with an independence working correlation 

structure for marginal mean regression, then the only moment conditions utilized are the 

ones such that s = j which are always valid regardless of the covariate type. Unfortunately, 

this safe approach can cause a great efficiency loss if the covariate is not of Type III because 

additional valid moment conditions are not used [3, 5]. In this situation, approaches allowing 

the use of all valid moment conditions have been proposed to achieve more efficient 

parameter estimation [5, 6, 7]. These methods, however, only focus on mean regression 

and have not been extended to quantile regression when time-dependent covariates exist. 

Therefore, we propose approaches to improve estimation efficiency and select a working 

type of time-dependency which is often unknown in practice.
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3 Proposed Methods

3.1 Improving Efficiency: Modified Estimating Equations for Quantile Regression

We first propose a modified estimating equations approach for improved efficiency by 

combining the estimating equations approach of Fu et al. [19] with the modified GEE 

approach of Chen and Westgate [7], which practically takes advantage of GEE’s popularity. 

We replace elements with 0 in the inverse of the correlation matrix and the replacement is 

executed for each individual biased estimating equation, depending on the covariate type. 

Specifically, our proposed estimating equations for βk
τ, k = 0, 1, …, p, are given by

∑
i = 1

N
Xi

k + 1Ai
−1/2Ri

τ *−1
(α)Ai

−1/2Si
τ = 0, (3)

where Xi
k + 1 is the (k + 1)th row of XT, and the elements of Rik

τ *−1
(α), k = 0, 1, …, p, are 

restricted to a certain type of covariate at a given quantile level τ. The modified approach 

then puts together these estimating equations and estimates regression parameter, correlation 

parameter, and standard error (SE) in the same nature as with the approach used in marginal 

quantile regression [19].

We propose to create Rik
τ *−1

 given in Equation (2) by modifying the inverse of a working 

correlation structure in general, Ri
τ−1

, employed in Equation (1) based on the specific 

type of time-dependent covariate. If parameter k is classified as a Type I time-dependent 

or time-independent covariate, then the information from all T2 valid moment conditions 

is incorporated. Under this circumstance, Rik
τ *−1

 is equal to Ri
τ−1

, indicating that the 

estimating equations from Equations (1) and (2) are identical. When the estimating equation 

of a parameter corresponds to a Type II time-dependent covariate, Rik
τ *−1

 is constrained to 

be a lower triangular matrix such that the T(T+1)/2 moment conditions for s ⩾ j, s, j = 1, …, 

T, are valid. In other wards, Rik
τ *−1

 is obtained by making all upper non-diagonal elements 

equal to 0. With respect to a Type IV time-dependent covariate, a contrast of a Type II, 

Rik
τ *−1

 can be obtained by taking Ri
τ−1

 and making all lower non-diagonal elements equal to 

0. Finally, when the parameter corresponds to a Type III time-dependent covariate, Rik
τ *−1

 is 

considered to be diagonal matrices in the estimating equation.

3.2 Selection of Working Classification Type for Time-Dependency

Use of the approach just proposed requires data analysts know the covariate’s type of 

time-dependency, although this is likely unknown in practice. We now propose an approach 

to select a working type of time-dependency with the goal of producing the least variable 

regression parameter estimate possible. We note that although more than one type of time­

dependent covariate can be chosen at any given quantile level τ, for simplicity of notation 

we assume there is only one time-dependent covariate of unknown type.
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To choose a working type for this covariate, we first consider an estimated MSE given by

MSE βc
τ = Cov βc

τ + βc
τ − βIII

τ βc
τ − βIII

τ T
, (4)

where βc
τ
 is the vector of regression parameter estimates in which the time-dependent 

covariate is assumed to be Type c, c = I, II, III, or IV, and Cov βc
τ

 denotes an empirically 

estimated covariance matrix of βc
τ
. We note that Cov βz  can be obtained by using the 

induced smoothing method [24]. In Equation (3), we replace the unknown βτ with βIII
τ

because βIII
τ p βτ, thus providing a consistent bias estimate, which is βc

τ − βτ . Here, the 

estimate of bias is followed by the defined βc
τ such that βc

τ p βc
τ . As N → ∞, Cov βc

τ 0

and MSE βc
τ βc

τ − βτ βc
τ − βτ T

. Therefore, if a given working covariate type yields 

bias, then asymptotically this type will not be chosen when using the selection approach. 

Specifically, if the truth is of Type I, then any working type produces consistent regression 

parameter estimation and can be chosen through this approach. If the true type is II (IV), 

then this approach method will choose either II (IV) or III. Moreover, asymptotically our 

method will choose Type III if this is the true type.

In order to utilize this estimated MSE to select a working classification type, we propose 

choosing the type that occurs with the smallest value for the trace of an empirical 

covariance matrix, tr MSE βc
τ

. We note that this criterion has been proven to perform 

well for the selection of a working covariate type [22]. In addition, the true variance of a 

corresponding regression parameter estimate relies upon the complex probabilities of each 

type being chosen, and therefore Cov βc
τ

 can result in a biased estimate of the variance. 

In consequence, cluster bootstrapped SEs should be adopted for statistical inference [22, 

28, 29]. Note that the empirical coverage probabilities of 95% confidence intervals using 

bootstrapped SEs resulted in near-nominal coverage, although the results are not shown in 

the simulation study.

4 Simulation Study

4.1 Study Description

We now compare the performances of our proposed selection approach for covariate type 

of time-dependency to the use of an independence working correlation structure, which 

treats unknown types of time-dependency as Type III, in the marginal quantile analysis. The 

selection approach is demonstrated with the modified estimating equations method using a 

first-order autoregressive (AR-1) working correlation structure, as AR-1 may be preferred 

over other structures such as exchangeable in a longitudinal study [30].

Three scenarios are carried out in the simulation study, corresponding to true Type I, II, 

and III time-dependent covariates, with results presented in Tables 1–3, respectively. Each 

scenario has the same marginal model given by Yij = β0 + β1xij + ϵij, i = 1, …, N; j = 

1, …, T. A fourth scenario extends the scenario with a true Type II covariate by adding 
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two additional types of covariates. Specifically, the model includes a time-independent 

binary indicator, a known type I time-dependent covariate corresponding to time itself, and 

a Type II covariate (Table 4). The data generation depending on the covariate type are 

described in the following paragraph. The number of subjects (N) used in any given setting 

is 100 and each subject contributes 5 repeated measurements (T). Each setting is conducted 

through 1,000 simulations using R version 3.6.2 [31]. Furthermore, models are based on 

previous marginal mean regression literature for time-dependent covariates [5, 7, 30, 32] 

and marginal quantile regression literature [14, 16, 19]. Although marginal quantile models 

including multiple types of time-dependent covariates were also studied, results were similar 

and are not presented.

When the time-dependent covariate is either Type I, II, or III, data are generated 

from Y ij = β0 + β1x1ij + β2x1i, j − 1 + γi + ϵij and x1ij = κx1i,j−1 + θγi + δij, i = 

1, …, 100; j = 1, …, 5, where β = [0, 1, 1]T , and random effects, γi and 

δij, are mutually independent and normally distributed with mean 0 and variance 

1 [5, 30]. Note that V ar γi = σγ2 and V ar δij = σδ
2. The covariate is of Type 

I if β2 = θ = 0, while the covariate is of Type II if θ = 0. Additionally, xi0 

follows a normal distribution with mean 0 and variance θ2σγ2 + σδ
2 / 1 − κ2  because 

the time process for xij is stationary. Here let κ = 0.5 and θ = 1.5. The 

marginal mean given by E Y ij ∣ x1ij = β0 + β1 + κβ2 + θ2σγ2 (1 + κ)/θ θ2σγ2 + σδ
2 x1ij gives 

true values of β0 = 0 for the marginal intercept, and β1 = 1, β1 + κβ2 = 1.5, and 

β1 + κβ2 + θ2σγ2 (1 + κ)/θ θ2σγ2 + σδ
2 = 2.19 for the marginal parameters corresponding to 

the Type I, II, and III covariates, correspondingly. In scenario 4, x2ij = j and x3ij ~ 

Bernoulli(0.6) added to the above model [7]. The true values of β3 = 0.5 and β4 = 1.5 are 

corresponded to these time-independent and Type I time-dependent covariates, respectively.

Furthermore, let ϵij = q + eij and the use of q is to guarantee p(ϵij ⩽ 0) = τ ∈ {0.1, 0.25, 0.5, 

0.75, 0.9}, the quantile level. Four cases are accounted for ei = [ei1, …, ei5]T: cases (1)-(3) 

assume that ei follows multivariate normal distribution, multivariate Student’s t-distribution 

with three degrees of freedom, and multivariate log-normal distribution, correspondingly, 

generating data using a true AR-1 structure with a correlation parameter 0.7; in order to 

create correlated heteroscedastic errors, cases (4) assumes eij = 0.25(1+|xij|)ζij, where ζi = 

[ζi1, …, ζi5]T follows multivariate normal distribution with the same combinations as cases 

(1)-(3).

In order to examine differences in estimation performances, in Tables 1–4 we present 

empirical biases corresponding to either the reference approach with an independence 

working structure or our proposed approach with an exchangeable or AR-1 structure, 

empirical MSEs of estimates for β1, and ratios of empirical MSEs, which we refer to as 

relative efficiencies (REs). For any given RE, the numerator is the MSE resulting from 

the use of reference approach, and the denominator is the MSE resulting from the use of 

our approach. The empirical powers for both approaches are also provided. Furthermore, 

we present the number of times a working covariate type is selected out of the 1,000 
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simulations. Note that we do not use a Type IV time-dependent covariate in our simulation 

study as results are comparable to those corresponding to a true Type II covaraite due to the 

resemblance in definitions. In the Supplementary Materials, we provide empirical coverage 

probabilities (CPs) of 95% confidence intervals.

4.2 Results

Results corresponding to either a true Type I, II, or III time-dependent covariate (Tables 

1, 2, and 3, respectively) show that the proposed selection approach used with the 

modified estimating equations method is more efficient than the approach incorporating 

an independence working correlation structure, i.e. use of working Type III, in the presence 

of within-subject correlation (cases 1–4). The REs ranged from 1.16 to 1.36, 1.03 to 1.13, 

and 1.03 to 1.11, correspondingly, over scenarios 1–3. When correlated heteroscedastic 

errors were accounted for (case 4), the results, in terms of REs and selection frequencies, 

were similar to those with errors following correlated parametric distributions (cases 1–3). 

In Table 4, RE results corresponding to a true Type II covariate in the multiple regression 

model were also similar to results observed in Table 2.

Results show, particularly in Tables 1, 2, and 4 with respect to Types I and II time­

dependencies, that our proposed approach can notably improve power via the reduction 

in MSEs. In Table 1 for Type I time-dependency, empirical power increases range from 

approximately 0.04 to 0.20, with the majority of increases being greater than 0.10. In 

Tables 2 and 4 for Type II time-dependency, overall gains in power were not as high, 

but were still very notable and ranged from approximately 0.02 to 0.11. Finally, we note 

that in Supplementary Material we demonstrate that both methods are similar in terms of 

the validity of inference, and hence power gains with our proposed approach are due to 

reductions in MSEs.

In general, the proposed approach demonstrated improvements for any given quantile level. 

Improvements are due to the fact that the proposed method chose either Type I or Type II, 

relative to the inefficient choice of Type III, the majority of the time when Type I or II was 

the truth. Finally, bias in estimates was often negligible and similar for the two methods.

Additionally, our proposed approach demonstrated consistent results, relative to the 

independence estimating equations approach, in terms of REs and selection frequencies 

for any given quantile level. The RE results corresponding to cases 1–4 and five quantile 

levels under the three scenario settings also demonstrated that, given a higher within-subject 

correlation, the proposed selection method, in general, resulted in the greater efficiency and 

chose most often the desired type of covariate. The results with respect to REs and selection 

frequencies were comparable regardless of the given correlation structure. Our selection 

approach had efficiency gains when the true Type I or II was under consideration. When 

Type I was the truth, simulated biases were negligible as expected because all moments 

are valid in such settings. When the truth was Type II, Type I was the only specification 

type that can result in bias. In such settings, Type I was never selected with our proposed 

method because the bias was negligible. Furthermore, our approach ensured that when Type 

III was the truth, Type III was correctly chosen as the working type in the majority of the 
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simulations and hence the resulting bias was negligible and comparable to the bias resulting 

from the independence estimating equations.

5 Application

We adopt the anthropometric screening data from the children study in the Philippines [8, 

23] to examine the association between anthropometric factors and morbidity index over 

time. The data were severely skewed to the right and were originally obtained from 448 

households from 1984 to 1985 [8]. Then, a subset of data containing 370 children (⩽ 14 

years) was used as the final data [5, 23], in which each child had measurements at three time 

points with four months between each subsequent measurement. Children with incomplete 

measurements were excluded, and only one child per household was selected for eliminating 

statistical correlation resulted from household clustering [23].

We use the marginal model suggested in the existing literature [5, 6, 7, 32], but employ 

marginal quantile regression at three quantile levels, τ = 0.25, 0.50, and 0.75, given by

Yij = β0 + β1BMIij + β2 Age ij + β3Female i + β4SR2ij + β5SR3ij + ϵij; j = 1, 2, 3,

where Yij, as presented below, is the ith child’s morbidity index during the jth four-month 

interval, and the morbidity index was conducted through the logistic transformation [5, 23].

Yij = log  days child was sick in last 2 weeks prior to time j + 0.5
14.5 −  days child was sick in last 2 weeks prior to time j .

Three covariates, including age in months and two indicators for survey rounds 2 and 3, are 

categorized as the known Type I time-dependent covariates, whereas BMI’s classification 

type of time-dependency is unknown and is the main focus of this analysis.

As in the simulation study, we analyze this data using the independence estimating equations 

method and our modified method with an AR-1 correlation structure, and select a working 

type for BMI through the use of our selection approach under three given quantiles. Table 

5 gives the estimates of regression parameters and corresponding cluster bootstrapped SEs 

using 2,000 cluster bootstrap samples, as well as the working type for BMI selected by our 

method. We note that although it is common practice to utilize BMI z-scores, we do not do 

so in order to stay consistent with the time-dependent covariate literature which uses this 

data [5, 6, 7, 27, 32].

The proposed approach assigns a working Type III classification for BMI at the first quartile 

(25th quantile) and median (50th quantile), whereas a working Type I classification is 

chosen at the third quartile (75th quantile) based on the smallest criterion value. Although 

there is an apparent discrepancy in the type chosen, we note that the goal is not specifically 

to choose the true type; rather, for any given quantile, the goal is to select the type that 

results in the lowest MSE. Essentially, the discrepancy is due to different types being 

estimated to yield a smaller MSE at different quantiles. Note that at the 25th and 50th 

quantile levels both approaches produce similar results in terms of regression parameter and 
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SE estimates for BMI due to the choice of Type III. Furthermore, our proposed approach 

produces smaller SE estimates than the reference approach at the 75th quantile, thus 

revealing our proposed method’s potential for efficiency improvement. For the other time­

dependent covariates of known type, smaller SE estimates are obtained using the proposed 

method. The use of a marginal quantile analysis provides a more complete description with 

respect to BMI by investigating different quantiles for the right-skewed morbidity index 

distribution, rather than the marginal mean analysis which gives support for the use of a 

working Type I specification [22].

6 Concluding Remarks

Covariate values in a longitudinal study may change over time. Marginal mean regression 

analyses for longitudinal data have been widely introduced when covariates are time-variant. 

However, for some real-world data the use of mean regression models may be sensitive to 

skewness and outliers in the data. In such cases, the use of marginal quantile analysis for 

modeling the conditional quantiles of the response variable is recommended. Therefore, we 

proposed a new approach for marginal quantile regression in order to improve regression 

parameter estimation and hence power. Our proposed method was shown to be superior in 

regard to power in the presence of Type I or II time-dependency.

Although for simplicity we only considered independence and AR-1 working correlation 

structures in the manuscript, other structures with less parsimonious forms are available 

as well, including exchangeable and Toeplitz correlation matrices. We note that with our 

modified approach, the working structure is technically not an actual correlation structure 

because some non-zero elements of Ri
τ−1

 corresponding to invalid moment conditions are 

replaced with zeros. In this situation, Rik
τ *−1

 will not be the inverse of a true correlation 

matrix when βk
τ corresponds to a Type II or IV.

Our simulation study and application example were analyzed via marginal quantile 

regression models with balanced repeated measurements. Nonetheless, the proposed 

estimation approach and selection approach in this manuscript are applicable to subjects 

with varying repeated measurements. Future study can be extended to improve efficiency 

of estimation performance of composite marginal quantile regression [26], which has 

been proposed when multiple quantiles share common characteristics, in the presence of 

time-varying covariates. Furthermore, approaches using a general stationary autocorrelation 

structure [16] and a selection technique, via the use of a Gaussian pseudolikelihood 

in substitution for a parametric likelihood [19], to decide the most adequate working 

correlation structure have been suggested to prevent the specification of any specific 

working correlation structures. Simultaneously selecting a working correlation structure and 

deciding a covariate type of time-dependency can be further developed.

Coverage probabilities were sub-nominal in some settings (see Supplementary Material). 

Further work is needed with the existing and proposed methods to ensure proper CPs in all 

scenarios, although CP is not the inferential gain of focus in this manuscript.
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The corresponding R code and functions for implementing the discussed approaches in 

this manuscript are given in Supporting Information and can be acquired by contacting the 

author at okv0@cdc.gov.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

[1]. Liang KY and Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 
1986; 73: 13–22.

[2]. Pepe MS and Anderson GL. A cautionary note on inference for marginal regression models with 
longitudinal data and general correlated response data. Communications in Statistics-Simulation 
and Computation 1994; 23: 939–951.

[3]. Fitzmaurice GM. A caveat concerning independence estimating equations with multiple 
multivariate binary data. Biometrics 1995; 51: 309–317. [PubMed: 7766784] 

[4]. Wang YG and Carey V. Working correlation structure misspecification, estimation and covariate 
design: implications for generalised estimating equations performance. Biometrika 2003; 90: 
29–41.

[5]. Lai TL and Small D. Marginal regression analysis of longitudinal data with time-dependent 
covariates: a generalized method-of-moments approach. Journal of the Royal Statistical Society: 
Series B 2007; 69: 79–99.

[6]. Zhou Y, Lefante J, Rice J et al. Using modified approaches on marginal regression analysis of 
longitudinal data with time-dependent covariates. Statistics in Medicine 2014; 33: 3354–3364. 
[PubMed: 24723212] 

[7]. Chen IC and Westgate PM. Improved methods for the marginal analysis of longitudinal data in the 
presence of time-dependent covariates. Statistics in Medicine 2017; 36: 2533–2546. [PubMed: 
28436045] 

[8]. Bouis HE and Haddad LJ. Effects of agricultural commercialization on land tenure, household 
resource allocation, and nutrition in the philippines. Research Report 79, International Food 
Policy Research Institute, Washington DC, 1990.

[9]. Koenker R and Bassett G. Regression quantiles. Econometrica 1978; 46: 33–50.

[10]. Chen L, Wei LJ and Parzen MI. Quantile regression for correlated observations, in: Proceedings 
of the Second Seattle Symposium in Biostatistics: Analysis of Correlated Data. New York: 
Springer, 2003.

[11]. Yin G and Cai J. Quantile regression models with multivariate failure time data. Biometrics 2005; 
61: 151–161. [PubMed: 15737088] 

[12]. Wang HJ and Zhu Z. Empirical likelihood for quantile regression model with longitudinal data. 
Journal of Statistical Planning and Inference 2011; 141: 1603–1615.

[13]. Tang CY and Leng C. Empirical likelihood and quantile regression in longitudinal data analysis. 
Biomerika 2011; 98: 1001–1006.

[14]. Fu L and Wang YG. Quantile regression for longitudinal data with a working correlation model. 
Computational Statistics and data Analysis 2012; 56: 2526–2538.

[15]. Leng C and Zhang W. Smoothing combined estimating equations in quantile regression for 
longitudinal data. Statistics and Computing 2014; 24: 123–136.

[16]. Lu X and Fan Z. Weighted quantile regression for longitudinal data. Computational Statistics 
2015; 30: 569–592.

[17]. Jung SH. Quasi-likelihood for median regression models. Journal of American Statistical 
Association 1996; 91: 251–257.

[18]. Westgate PM. Criterion for the simultaneous selection of a working correlation structure and 
either generalized estimating equations or the quadratic inference function approach. Biometrical 
Journal 2014; 56: 461–476. [PubMed: 24431030] 

Chen and Westgate Page 11

Int J Biostat. Author manuscript; available in PMC 2021 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[19]. Fu L, Wang YG and Zhu M. A gaussian pseudolikelihood approach for quantile regression with 
repeated measurements. Computational Statistics and data Analysis 2015; 84: 41–53.

[20]. Stoner JA and Leroux BG. Analysis of clustered data: a combined estimating equations approach. 
Biometrika 2002; 89: 567–578.

[21]. Westgate PM. Improving the correlation structure selection approach for generalized estimating 
equations and balanced longitudinal data. Statistics in Medicine 2014; 33: 2222–2237. [PubMed: 
24504841] 

[22]. Chen IC and Westgate PM. A novel approach to selecting classification types for time-dependent 
covariates in the marginal analysis of longitudinal data. Statistical Methods in Medical Research 
2019; 28: 3176–3186. [PubMed: 30203725] 

[23]. Bhargava A Modelling the health of filipino children. Journal of the Royal Statistical Society: 
Series A 1994; 157: 417–432.

[24]. Brown BM and Wang YG. Standard errors and covariance matrices for smoothed rank estimators. 
Biometrika 2005; 92: 149–158.

[25]. Pang L, Lu W and Wang HJ. Variance estimation in censored quantile regression via induced 
smoothing. Computational Statistics and Data Analysis 2012; 56: 785–796. [PubMed: 22547899] 

[26]. Yang CC, Chen YH and Chang HY. Composite marginal quantile regression analysis for 
longitudinal adolescent body mass index data. Statistics in Medicine 2017; 36: 3380–3397. 
[PubMed: 28574584] 

[27]. Lalonde TL, Wilson JR and Yin J. Gmm logistic regression models for longitudinal data with 
time-dependent covariates and extended classifications. Statistics in Medicine 2014; 33: 4756–
4769. [PubMed: 25130989] 

[28]. Moulton LH and Zeger SL. Analyzing repeated measures on generalized linear models via the 
bootstrap. Biometrics 1989; 45: 381–394.

[29]. Sherman M and le Cessie S. A comparison between bootstrap methods and generalized 
estimating equations for correlated outcomes in generalized linear models. Communications in 
Statistics-Simulation and Computation 1997; 26: 901–925.

[30]. Diggle PJ, Heagerty PJ, Liang KY et al. The Analysis of Longitudinal Data. 2nd ed. New York: 
Oxford University Press, 2002.

[31]. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria, 2019. URL https://www.R-project.org/.

[32]. Leung DHY, Small DS, Qin J et al. Shrinkage empirical likelihood estimator in longitudinal 
analysis with time-dependent covariates–application to modeling the health of filipino children. 
Biometrics 2013; 69: 624–632. [PubMed: 23845158] 

Chen and Westgate Page 12

Int J Biostat. Author manuscript; available in PMC 2021 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.R-project.org/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen and Westgate Page 13

Table 1:

Results for Cases 1–4 in which one Type I time-dependent covariate is incorporated.

τ=0.10 τ=0.25 τ=0.50 τ=0.75 τ=0.90

EX AR-1 EX AR-1 EX AR-1 EX AR-1 EX AR-1

Case (1)

Bias I −.0026 −.0026 .0008 .0008 .0029 .0029 .0003 .0003 .0043 .0043

Bias P −.0012 −.0006 .0026 .0017 .0017 .0020 .0005 .0012 .0012 .0025

MSE P .0092 .0091 .0069 .0071 .0064 .0065 .0072 .0071 .0092 .0091

RE 1.245 1.259 1.289 1.258 1.257 1.249 1.254 1.273 1.266 1.276

Power I 0.635 0.635 0.714 0.714 0.734 0.734 0.691 0.691 0.652 0.652

Power P 0.785 0.785 0.861 0.849 0.872 0.877 0.840 0.847 0.791 0.818

Type I 590 571 586 561 552 554 534 544 577 624

Type II 262 305 264 314 280 296 296 323 275 255

Type III 148 124 150 125 168 150 170 133 148 121

Case (2)

Bias I −.0089 −.0089 .0067 .0067 .0015 .0015 −.0003 −.0003 .0025 .0025

Bias P −.0060 −.0062 .0055 .0048 .0010 .0017 .0004 .0007 .0010 .0023

MSE P .0146 .0145 .0095 .0093 .0083 .0081 .0097 .0097 .0149 .0148

RE 1.237 1.250 1.212 1.241 1.181 1.222 1.243 1.247 1.223 1.232

Power I 0.454 0.454 0.649 0.649 0.659 0.659 0.608 0.608 0.482 0.482

Power P 0.627 0.652 0.779 0.781 0.811 0.832 0.764 0.782 0.649 0.661

Type I 544 583 568 569 547 551 533 546 577 581

Type II 256 263 263 309 284 330 286 325 246 271

Type III 200 154 169 122 169 119 181 129 177 148

Case (3)

Bias I .0041 .0041 −.0004 −.0004 .0056 .0056 .0023 .0023 .0115 .0115

Bias P .0026 .0029 .0001 −.0002 .0032 .0040 .0016 .0030 .0093 .0126

MSE P .0073 .0070 .0069 .0067 .0077 .0076 .0121 .0118 .0444 .0446

RE 1.311 1.363 1.232 1.274 1.195 1.212 1.199 1.228 1.172 1.166

Power I 0.700 0.700 0.735 0.735 0.727 0.727 0.581 0.581 0.329 0.329

Power P 0.870 0.872 0.866 0.861 0.859 0.868 0.714 0.730 0.368 0.386

Type I 600 588 502 512 543 547 530 550 470 517

Type II 248 296 310 344 279 316 305 308 258 229

Type III 152 116 188 144 178 137 165 142 272 254

Case (4)

Bias I .0014 .0014 −.0015 −.0015 .0004 .0004 .0015 .0015 −.0025 −.0025

Bias P .0015 .0005 .0007 −.0002 .0003 −.0015 .0012 .0012 −.0014 −.0038

MSE P .0078 .0074 .0061 .0061 .0050 .0048 .0058 .0058 .0073 .0072

RE 1.219 1.281 1.253 1.246 1.236 1.291 1.262 1.253 1.276 1.294

Power I 0.716 0.716 0.765 0.765 0.812 0.812 0.776 0.776 0.690 0.690

Power P 0.857 0.874 0.897 0.890 0.912 0.914 0.893 0.896 0.860 0.855

Type I 485 486 493 483 521 525 484 462 491 471

Type II 328 399 322 380 319 352 318 388 315 386

Type III 187 115 185 137 160 123 198 150 194 143
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τ - quantile level; EX - exchangeable; AR-1 - first-order autoregressive;

BiasI and BiasP - empirical biases of the method with an independence structure and the proposed method;

MSEP - empirical mean squared error (MSE) of the proposed approach;

RE - relative efficiency or ratio of the empirical MSE from the estimation method with an independence structure to the MSE from the proposed 
method;

PowerI and PowerP - empirical powers of the reference approach and the proposed approach, respectively;

Types I-III - the number of times out of 1,000 simulations that the given covariate type was selected.
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Table 2:

Results for Cases 1–4 in which one Type II time-dependent covariate is incorporated.

τ=0.10 τ=0.25 τ=0.50 τ=0.75 τ=0.90

EX AR-1 EX AR-1 EX AR-1 EX AR-1 EX AR-1

Case (1)

Bias I −.0044 −.0044 −.0000 −.0000 .0001 .0001 −.0012 −.0012 .0047 .0047

Bias P −.0077 −.0042 −.0006 −.0003 −.0004 .0005 −.0024 −.0009 .0020 .0053

MSE P .0131 .0124 .0104 .0102 .0092 .0092 .0110 .0109 .0128 .0122

RE 1.054 1.109 1.082 1.103 1.125 1.114 1.101 1.110 1.067 1.115

Power I 0.890 0.890 0.944 0.944 0.955 0.955 0.935 0.935 0.891 0.891

Power P 0.956 0.945 0.979 0.977 0.983 0.979 0.979 0.978 0.960 0.950

Type I 40 0 14 0 4 0 12 0 30 0

Type II 769 792 730 781 707 739 731 760 747 810

Type III 191 208 256 219 289 261 257 240 223 190

Case (2)

Bias I −.0083 −.0083 .0015 .0015 .0006 .0006 −.0014 −.0014 .0021 .0021

Bias P −.0116 −.0057 .0005 .0030 −.0002 .0013 −.0041 −.0010 −.0025 .0021

MSE P .0185 .0172 .0138 .0130 .0117 .0116 .0143 .0138 .0182 .0169

RE 1.033 1.112 1.049 1.107 1.081 1.092 1.048 1.085 1.054 1.136

Power I 0.741 0.741 0.882 0.882 0.912 0.912 0.885 0.885 0.777 0.777

Power P 0.859 0.840 0.944 0.940 0.965 0.971 0.947 0.938 0.865 0.847

Type I 82 3 34 0 18 0 24 0 65 2

Type II 686 762 724 787 685 732 707 758 693 740

Type III 232 235 242 213 297 268 269 242 242 258

Case (3)

Bias I .0041 .0041 −.0015 −.0015 .0039 .0039 .0011 .0011 .0042 .0042

Bias P .0006 .0039 −.0025 −.0008 .0017 .0025 −.0006 .0032 −.0057 .0031

MSE P .0126 .0120 .0107 .0106 .0113 .0112 .0146 .0138 .0375 .0368

RE 1.077 1.128 1.096 1.111 1.074 1.086 1.056 1.113 1.058 1.079

Power I 0.933 0.933 0.952 0.952 0.944 0.944 0.832 0.832 0.466 0.466

Power P 0.978 0.978 0.979 0.981 0.969 0.974 0.898 0.899 0.511 0.519

Type I 35 0 14 0 10 0 31 0 165 22

Type II 798 845 683 758 685 732 715 759 546 662

Type III 167 155 303 242 305 268 254 241 289 316

Case (4)

Bias I .0008 .0008 −.0031 −.0031 −.0020 −.0020 .0029 .0029 −.0023 −.0023

Bias P −.0008 .0011 −.0035 −.0033 −.0022 −.0010 .0022 .0025 −.0047 −.0021

MSE P .0115 .0114 .0091 .0090 .0073 .0073 .0086 .0085 .0115 .0109

RE 1.112 1.124 1.070 1.084 1.109 1.104 1.096 1.106 1.075 1.127

Power I 0.937 0.937 0.966 0.966 0.974 0.974 0.967 0.967 0.948 0.948

Power P 0.973 0.975 0.985 0.990 0.989 0.988 0.985 0.992 0.983 0.979

Type I 16 0 9 0 0 0 8 0 18 0

Type II 802 847 722 786 699 706 758 817 754 815

Type III 182 153 269 214 301 294 234 183 228 185
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τ - quantile level; EX - exchangeable; AR-1 - first-order autoregressive;

BiasI and BiasP - empirical biases of the method with an independence structure and the proposed method;

MSEP - empirical mean squared error (MSE) of the proposed approach;

RE - relative efficiency or ratio of the empirical MSE from the estimation method with an independence structure to the MSE from the proposed 
method;

PowerI and PowerP - empirical powers of the reference approach and the proposed approach, respectively;

Types I-III - the number of times out of 1,000 simulations that the given covariate type was selected.
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Table 3:

Results for Cases 1–4 in which one Type III time-dependent covariate is included.

τ=0.10 τ=0.25 τ=0.50 τ=0.75 τ=0.90

EX AR-1 EX AR-1 EX AR-1 EX AR-1 EX AR-1

Case (1)

Bias I .0098 .0098 .0140 .0140 .0158 .0158 .0163 .0163 .0115 .0115

Bias P .0088 .0083 .0134 .0126 .0154 .0145 .0158 .0150 .0101 .0097

MSE P .0019 .0019 .0014 .0014 .0012 .0012 .0016 .0016 .0018 .0018

RE 1.042 1.049 1.032 1.040 1.047 1.058 1.029 1.032 1.045 1.051

Power I 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Power P 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Type I 2 49 3 22 2 23 0 19 9 45

Type II 141 297 57 244 55 253 68 254 137 301

Type III 857 654 940 734 943 724 932 727 854 654

Case (2)

Bias I .0079 .0079 .0152 .0152 .0173 .0173 .0129 .0129 .0080 .0080

Bias P .0060 .0056 .0147 .0138 .0167 .0156 .0122 .0113 .0058 .0054

MSE P .0027 .0027 .0019 .0019 .0016 .0016 .0018 .0018 .0028 .0028

RE 1.048 1.046 1.037 1.045 1.049 1.050 1.042 1.049 1.056 1.051

Power I 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.998

Power P 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999

Type I 3 32 1 7 0 5 0 4 9 28

Type II 223 380 83 269 42 203 81 268 219 353

Type III 774 588 916 724 958 792 919 728 772 619

Case (3)

Bias I .0200 .0200 .0195 .0195 .0187 .0187 .0076 .0076 .0089 .0089

Bias P .0193 .0186 .0187 .0182 .0184 .0174 .0060 .0051 .0041 .0038

MSE P .0017 .0017 .0012 .0012 .0015 .0015 .0024 .0024 .0063 .0063

RE 1.035 1.045 1.052 1.064 1.045 1.051 1.035 1.024 1.109 1.116

Power I 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.914 0.914

Power P 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.941 0.938

Type I 3 36 14 104 1 16 1 1 13 21

Type II 30 190 43 175 32 221 163 350 383 459

Type III 967 774 943 721 967 763 836 649 604 520

Case (4)

Bias I .0128 .0128 .0164 .0164 .0169 .0169 .0148 .0148 .0123 .0123

Bias P .0111 .0106 .0155 .0148 .0159 .0155 .0133 .0129 .0106 .0099

MSE P .0029 .0029 .0021 .0021 .0018 .0018 .0020 .0020 .0026 .0026

RE 1.035 1.032 1.039 1.051 1.053 1.058 1.054 1.065 1.048 1.047

Power I 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Power P 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Type I 2 18 5 39 6 86 4 40 0 25

Type II 124 329 82 291 112 298 105 277 126 313

Type III 874 653 913 670 882 616 891 683 874 662
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τ - quantile level; EX - exchangeable; AR-1 - first-order autoregressive;

BiasI and BiasP - empirical biases of the method with an independence structure and the proposed method;

MSEP - empirical mean squared error (MSE) of the proposed approach;

RE - relative efficiency or ratio of the empirical MSE from the estimation method with an independence structure to the MSE from the proposed 
method;

PowerI and PowerP - empirical powers of the reference approach and the proposed approach, respectively;

Types I-III - the number of times out of 1,000 simulations that the given covariate type was selected.
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Table 4:

Results for Cases 1–4 in which one time-independent, one Type I, and one Type II time-dependent covariates 

are incorporated. Only results corresponding to the Type II covariate are shown.

τ=0.10 τ=0.25 τ=0.50 τ=0.75 τ=0.90

EX AR-1 EX AR-1 EX AR-1 EX AR-1 EX AR-1

Case (1)

Bias I −.0073 −.0073 −.0023 −.0023 −.0093 −.0093 −.0030 −.0030 −.0106 −.0106

Bias P −.0091 −.0060 −.0051 −.0029 −.0101 −.0100 −.0048 −.0028 −.0149 −.0102

MSE P .0150 .0153 .0101 .0098 .0089 .0088 .0110 .0107 .0154 .0148

RE 1.159 1.139 1.116 1.150 1.101 1.106 1.080 1.119 1.110 1.156

Power I 0.849 0.849 0.941 0.941 0.946 0.946 0.919 0.919 0.846 0.846

Power P 0.927 0.917 0.987 0.988 0.976 0.979 0.972 0.972 0.914 0.922

Type I 41 0 15 0 7 0 18 0 59 1

Type II 588 628 677 741 691 771 657 734 577 650

Type III 371 372 308 259 302 229 325 266 364 349

Case (2)

Bias I −.0106 −.0106 −.0082 −.0082 −.0006 −.0006 −.0036 −.0036 −.0044 −.0044

Bias P −.0175 −.0102 −.0105 −.0080 −.0015 −.0001 −.0055 −.0027 −.0087 −.0037

MSE P .0255 .0248 .0144 .0143 .0109 .0110 .0132 .0127 .0230 .0228

RE 1.109 1.140 1.112 1.123 1.144 1.143 1.094 1.142 1.122 1.134

Power I 0.682 0.682 0.843 0.843 0.919 0.919 0.875 0.875 0.689 0.689

Power P 0.791 0.768 0.946 0.937 0.965 0.968 0.943 0.941 0.782 0.776

Type I 105 5 23 0 14 0 28 0 94 6

Type II 529 643 652 730 696 749 676 735 560 645

Type III 366 352 325 270 290 251 296 265 346 349

Case (3)

Bias I −.0113 −.0113 −.0025 −.0025 −.0038 −.0038 −.0008 −.0008 −.0095 −.0095

Bias P −.0134 −.0094 −.0035 −.0020 −.0060 −.0039 −.0060 −.0003 −.0143 −.0092

MSE P .0136 .0133 .0103 .0101 .0105 .0103 .0175 .0168 .0521 .0546

RE 1.105 1.131 1.107 1.134 1.091 1.114 1.074 1.117 1.108 1.058

Power I 0.909 0.909 0.950 0.950 0.945 0.945 0.763 0.763 0.461 0.461

Power P 0.969 0.975 0.983 0.991 0.970 0.978 0.872 0.844 0.521 0.519

Type I 50 0 7 0 15 0 54 1 224 66

Type II 608 663 674 720 700 768 624 712 422 559

Type III 342 337 319 280 285 232 322 287 354 375

Case (4)

Bias I −.0109 −.0109 −.0064 −.0064 −.0035 −.0035 −.0057 −.0057 −.0088 −.0088

Bias P −.0147 −.0091 −.0081 −.0051 −.0038 −.0028 −.0058 −.0044 −.0139 −.0086

MSE P .0145 .0139 .0114 .0109 .0097 .0096 .0112 .0107 .0150 .0136

RE 1.100 1.148 1.057 1.100 1.098 1.113 1.081 1.131 1.015 1.119

Power I 0.878 0.878 0.936 0.936 0.966 0.966 0.942 0.942 0.896 0.896

Power P 0.938 0.942 0.962 0.967 0.990 0.993 0.971 0.982 0.950 0.947

Type I 91 0 23 0 10 0 17 0 82 1

Type II 556 653 662 727 680 735 657 716 541 636
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τ=0.10 τ=0.25 τ=0.50 τ=0.75 τ=0.90

EX AR-1 EX AR-1 EX AR-1 EX AR-1 EX AR-1

Type III 353 347 315 273 310 265 326 284 377 363

τ - quantile level; EX - exchangeable; AR-1 - first-order autoregressive;

BiasI and BiasP - empirical biases of the method with an independence structure and the proposed method;

MSEP - empirical mean squared error (MSE) of the proposed approach;

RE - relative efficiency or ratio of the empirical MSE from the estimation method with an independence structure to the MSE from the proposed 
method;

PowerI and PowerP - empirical powers of the reference approach and the proposed approach, respectively;

Types I-III - the number of times out of 1,000 simulations that the given covariate type was selected.
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Table 5:

Parameter estimates, empirical and cluster bootstrapped standard error estimates (in parentheses), and working 

types of covariate for BMI resulting from analyses of the anthropometric dataset.

Independence Proposed*

Variable τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

BMI −0.20 (0.002) −0.18 (0.003) −0.05 (0.024) −0.20 (0.002) −0.18 (0.003) −0.05 (0.019)

Age −0.01 (0.001) −0.01 (0.001) −0.03 (0.005) −0.01 (0.001) −0.01 (0.001) −0.03 (0.005)

Gender −0.02 (0.021) −0.02 (0.030) 0.41 (0.267) −0.02 (0.026) −0.01 (0.036) 0.42 (0.221)

SR 2 −0.08 (0.025) −0.08 (0.036) −0.69 (0.328) −0.07 (0.021) −0.06 (0.033) −0.66 (0.248)

SR 3 0.002 (0.027) 0.05 (0.035) 0.42 (0.374) 0.01 (0.024) 0.06 (0.034) 0.47 (0.281)

Type III III I

τ - quantile level; SR - survey round; Type - working covariate type for BMI.

*
Note that the standard error estimates are obtained using the cluster bootstrapped method.
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